

Soldier Modeling for Improved Accommodation and Safety

Quad Members

Faculty: Matthew P. Reed, Jingwen Hu, Han Kim, Jonathan D. Rupp, Judy Jin U. of Michigan

Zissimos Mourelatos, Dorin Drignei

Oakland U.

- Student: Yaser Zerehsaz (GSRA), Daniel Park (post-doc), many undergrads U. of Michigan
- Government: Gale Zielinski, Frank Huston, Harry Zywiol, Risa Scherer, Rebekah Gruber, David Clark, John Tesluk, U.S. Army TARDEC
- Industry: Jeff Mayhugh, Navistar Ulrich Raschke, Siemens

Motivation

- Current and future vehicle programs face major challenges in providing adequate accommodation for soldiers while ensuring performance and safety
- Current MIL-STD 1472g lacks detailed information on soldier posture and body shape, including the effects of personal protective equipment (PPE) for seat and vehicle interior layout

- Current design guidance is based on outdated anthropometry and tools that do not adequately represent soldier attributes
- Design standards for seats, restraints, and vehicle interior layout do not take into account PPE and gear

The Seated Soldier Study

Methods:

- Measured 310 soldiers at 3 Army posts
- Driver and squad postures
- Whole-body laser scanning

Standard Anthropometry

Driver Postures

Squad Postures

S³: Major Outcomes

Driver Posture Prediction

Goal: Predict driving posture

Inputs:

- steering wheel location re accelerator pedal
- driver stature, erect sitting height, body weight, and gear level (ACU, PPE, ENC)

Outputs:

- Seat position
- Seat back angle
- Hip location
- Eye location
- Body segment angles

Squad Posture Prediction

Goal: Predict squad posture

Inputs:

- seat height and back angle
- stature, erect sitting height, body weight, and gear level (ACU, PPE, ENC)

Outputs:

- Hip location
- Eye location
- Body segment angles

Accommodation Modeling

- **Background:** Design tools embodying human accommodation requirements are needed for vehicle interior layout
- **Objective:** Create soldier-specific design tools using methods developed at U-M
- Method: Analyze driver and squad posture and space-claim information from Seated Soldier Study
- **Status:** Driver and squad models completed; preparing documentation and assisting TARDEC in implementation

Seat Index Point Tool

Background: The current standard tool for measuring seats is not practicable for many squad seating conditions

- **Objective:** Evaluate and adapt the ISO 5353 Seat Index Point Tool for military seating applications
- Method: Add back angle probe; Comparative measurements of military seats
- **Status:** Completing initial testing; finalizing back angle probe; preparing documentation.

SAE J826

ISO 5353

New Driver Configurations

- **Background:** New vehicle designs may include driver workstations markedly different from typical trucks
- **Objective:** Quantify driver posture and component-location preferences for 3 configurations
- **Method:** Field study using soldiers in mockups
- **Status:** Constructing mockups for pilot testing; full-scale testing on an Army post Fall 2014

Background: Soldiers wearing heavy gear must perform a wide range of in-vehicle tasks; current data with light clothing are not applicable

Objective: Quantify the effects of body armor and body borne gear on seated reach capability and difficulty.

- **Method:** Laboratory motion-capture study using volunteers with a wide range of body size
- **Status:** Full-scale testing underway (targeting 36 subjects)

Equipped Reach

Equipped Reach

Background: Many soldier injuries in vehicles are due to crashes, including rollovers

Objective: Optimize airbag/restraint system designs for occupant protection in tactical vehicles in frontal and rollover crashes using sled tests, finite element simulations, and a hybrid optimization process

Method:

- Baseline sled tests
- Develop and validated occupant and compartment FE models
- Parametric simulations and hybrid design-space exploration optimization*
- Airbag/restraint optimizations
- Additional sled tests to verify optimized solutions

* Collaboration with Oakland University

Baseline Sled Tests: Body Armor

3-Point Belt

5-Point Harness

Baseline Sled Tests: Added Gear

3-Point Belt

5-Point Harness

Finite Element Models

Midsize Male HIII ATD with ACU, IOTV, and TAP

5-Point Baseline – No Gear

40 Time(ma) Time(ms) Time[ms] R Femur Force z L Femur Force z g15 0.5 -0.5 -1-1 0 10 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 90 100 70 80

Time(mi)

Time(ms)

WIAMan Activities at U-M

- UMTRI is one of several sites conducting biomechanics testing in support of the Warrior Injury Assessment Manikin program
- The U-M role includes anthropometric specifications for WIAMan and subject positioning guidelines using ARC Seated Soldier Study data.

Pilot Testing with Hybrid-III

Related Activities 2014-15

- Driver posture data collection at an Army post (summer 2014)
- Optimizing vehicle layout taking into account multiple design constraints
- Seat design guidelines, methods, and technology to account for current body dimensions and gear
- Advanced manikin generation, including realistic effects of encumbrance (with NSRDEC)
- HMMWV frontal crash and rollover testing, restraint system optimization using FE models
- FS³: Extending seated soldier with more female participants?

Research Team and Collaborators

TARDEC

Risa Scherer Katrina Harris Holly Howard Harry Zywiol Stacy Budzik Jennifer Ammori Mike Megiveron Hollie Pietsch Gale Zielinkski Frank Huston Rebekah Gruber John Tesluk

Industry

Jeff Mayhugh Pete Kempf Ulrich Raschke

Anthrotech

Bruce Bradtmiller Belva Hodge Lisa Ann Piercy Mike Mucher Mark Breza Travis Hotaling Tatiana Lurie Christina Smith

Other US Army

Brian Corner Steve Paquette Todd Garlie Joe McEntire Rick Kosycki

US Army Site POCs

John MacArthur (JBLM) Fred Corbin (Ft Hood) Jim Parks (Ft Campbell)

U-M

Sheila Ebert Jingwen Hu Jon Rupp Carl Miller Nathaniel Madura Brian Eby Quentin Weir Charlie Bradley Laura Malik Judy Jin Yaser Zerehsaz

Oakland U

Zissimos Mourelatos Dorin Drignei

Acknowledgement

This work was supported by the Automotive Research Center, a U.S. Army Center of Excellence for Modeling and Simulation of Ground Vehicles led by the University of Michigan

For more information:

mreed@umich.edu

mreed.umtri.umich.edu